

Metal Seated Ball Valves

Engineered Valves for Severe Service Reliability with Innovative Process Solutions

Flo-Tite works with customers to design valves tailored to their specific needs. Knowledge of applications, materials and design allows our engineers to find solutions to problems quickly and effectively.

Extreme Temperatures, Extreme Pressures and Your Toughest Application Challenges

- ANSI Class Flanged Ends
- 150, 300, 600, 900, 1500, 2500
- Size 1/2" thru 24 inch
- Floating & Trunnion Types
- On-Off & Modulating Options

- Threaded Ends
- Socket and Butt Weld Ends
- 2250 / 3000 /6000 PSI Ratings
- Two & Three PC Designs
- 3 & 4 Way Multiport Designs

Flo-Tite's Metal Seated Valve Standards & Design

Severe Series

Demanding services requiring resistance to abrasion, erosion, corrosion, solids and high temperatures beyond the capabilities of polymer seated ball valves, temperatures up to 800 °F

Tri-Ton Series

High pressure 3pc ball valve Manufactured from forged or bar stock materials This series is manufactured to your exact specifications Available in all ANSI pressure classes from 150 thru 2500 Consult factory for more information on this series

Corrosion / Erosion Resistance

• Extend the life of metals with a wide selection of surface coatings, available for valve internal / externals. These coatings include Teflon, chrome, electroless nickel, zinc phosphate, galvanizing & many more options.

Ball & Seats

- Mate-lapped for 100% sealing contact
- Ensures absolute shutoff per ANSI classification
- Corrosion resistant
- Seats are protected from flow in open / closed position
- Seats are available as field replaceable sets

Seat Spring

• Assisted by line pressure, provides a constant mechanical force on ball against seat to maintain a tight seal

Extreme Series

Applications where temperatures exceed 800 °F & up to temperatures as high as 1200 °F. Media build-up, cycling with solids in the line & erosive attack of materials & coatings. Flo-Tite extreme series valves are designed & developed for the most severe services heavy industry has to offer.

In-line Repairability

- Three-piece valve assembly
- Valve body can be easily removed while end connections remain in-line
- Allows valve body to be tested after repair, prior to insertion back in the pipe line

Body Gaskets

- Encapsulated spiral wound body seals guarantee zero leaks to the surrounding area.
- Lowers contact stresses

Quarter-turn, Non-rising Stem

- Live loaded expanded graphite stem seals garantees zero leaks and low emissions
- Quick open / close operation, compact design

Scraper Seat Design

Flo-Tite's scraper seat is ideal for most difficult applications where build-up of damaging fluid deposit may occur on the ball face. Overtime, this occurance to the critical smooth ball surface will cause the ball to become rough and dull rendering the valve inoperative. This problem is most common in pulp making recovery in white, black & green liquors.

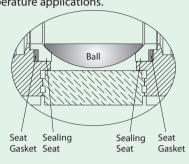
Standards and Specifications

Valves covered in this bulletin are available to conform to the following industry standards and specifications

All valves are manu	factured to ISO 9001	quality standards.
---------------------	----------------------	--------------------

WW-V-35C	Federal Specification: Valve, Ball		
ANSI/ASMEB16.10	Face-to-Face / End-to-End Dimensions of Ferrous Valves		
ANSI/ASMEB16.5	Steel Pipe Flanges and Flange Fittings		
ANSI/ASMEB16.34	Steel Valves - Flanged and Buttwelded End		
ANSI/ASMEB31.1	PowerPiping		
ANSI/ASMEB31.3	Chemical Plant & Petroleum Refinery Piping		
ANSI/FCI70-2-1976	For Control Valve Leakage		
BS 6755, Part 2	Testing of Valves - Specification for Fire Type Testing		
ISO 5752:1982	Metal Valves for use in Flanged Piping Systems		
ISA 75.02	Valve Sizing Coefficient Cv, Piping Geometry Factor Fp		
	and Pressure Drop Limitation XT		
ISA \$75.19	Hydrostatic Testing of Control Valves		
ISO 5211	Dimensions for Attachment of Actuators/Gear Boxes to		
	Valves (ISO Mounting)		
MSS-SP-25	Standard Marking Systems for Valves		
MSS SP-55	Quality Standards for Steel Castings		

MSS-SP-6	Standard Finishes for Contact Faces of Pipe Flanges and		
	Connecting-End Flanges of Valves and Fittings		
MSS-SP-44	Steel Pipe Line Flanges		
MSS-SP-61	Pressure Testing of Steel Valves		
MSS-SP-72	Flanged or Butt and Weld End Ball Valves Having Full		
	or Reduced Bores for General Liquid and Gas Service		
MSS-SP-96	Terminology for Valves and Fittings		
NACEMR01-75	Sulfide Stress Cracking Resistant Materials for Oilfield		
	Equipment.		
Optio	nal Standards & Specification		
API 608	Metal Ball valves Used in On-Off Service that have		
	Buttwelded or Flanged Ends for Size 1/2"NPS - 12" NPS		
API 6D	Specifications for Pipeline Valves		
API 598	Valve Inspection and Testing		
MSS-SP-53	Quality Standard for Steel Casting and Forging for		
	Valves, Flanges and Fittings and Other Piping Compo-		
	nents-Magnetic Paticle Examination Method		
MSS-SP-93	Quality Standard for Steel Casting and Forging for		
	Valves, Flanges and Fittings and Other Piping Compo-		
	nents-Liquid Penetrant Method		
	i		


High-Tech Metal Seat Design Selections

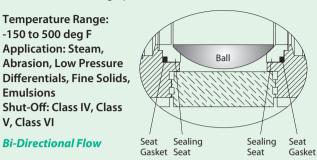
G Seat - Graphite Sealed Seat

A series of Graphite seal rings behind the metal seat, coupled with a Graphite outer diameter seat seal, prevent media from building up behind the seat. The rings also allow for expansion of the internal valve components in high temperature applications.

Temperature Range: 200 to 800 deg F Application: Steam, Abrasion, High Temperatures, Fine Solids Shut-Off: Class V, VI

Bi-Directional Flow

(B1)

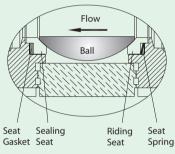

(B3)

O Seat - O-Ring Sealed Seat

(B2)

(B4)

A double seal design providing both spring loading and excellent sealing capabilities. There is no area for media to build up behind the seat, which prevents the valve from locking up.

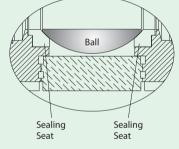


P Seat - Spring Loaded

For unidirectional applications. The sealing seat is available as a separate seat ring for reparability, or integral with the tailpiece for high temperature applications. The spring seat OD seal prevents media from building up between the spring and the back of the seat.

Temperature Range: 400 to 1200 deg F Application: Steam, Low Pressure Differentials, High Temperatures Shut-Off: Class V, Class VI Preferred automated design Gasket

Uni-Directional Flow

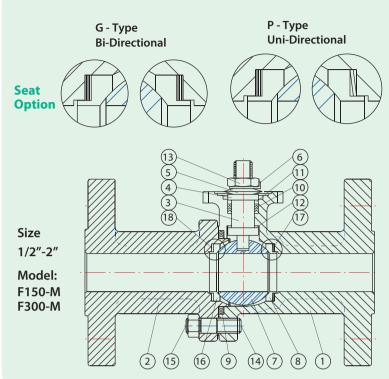

R Seat - Replaceable Seat Design

This seat design is an ideal choice for that application that exceeds the requirements for the high temperature soft seated ball valves.

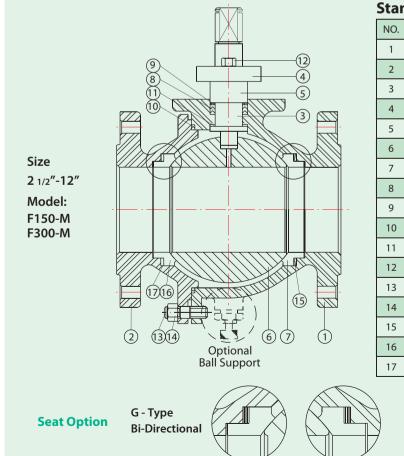
All valve balls are upgraded to assure a precise spherically finish. If needed, this valve is considered as drop-in replacement of the valve seat and can be rebuilt in the field. No special machining is required.

Temperature Range: 400 to 650 deg F Application: Steam, Low Pressure Differentials, High Temperatures Shut-Off: Class V, Class VI

Bi-Directional Flow

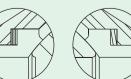


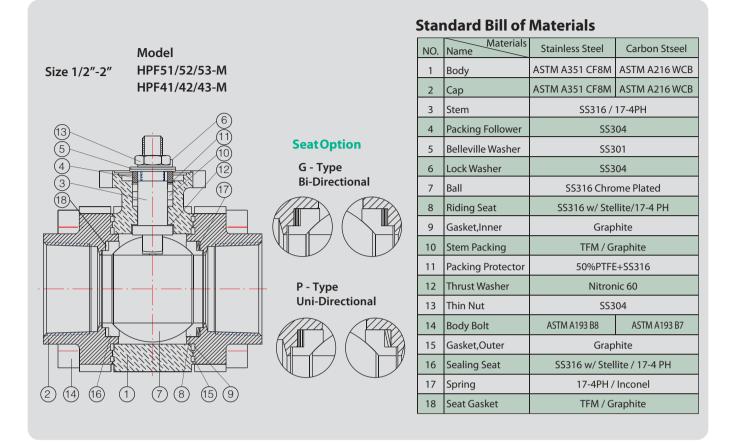
High-Temperature Metal-Seated Ball Valves are well suited for a variety of demanding services where high-temperature and abrasive solids are present

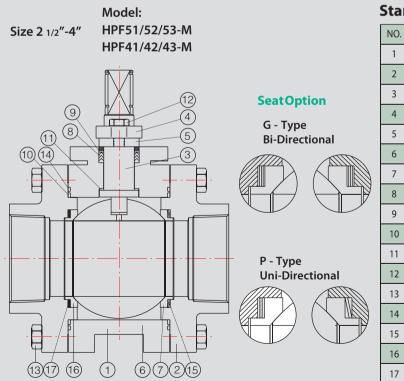

Features:

- The spring seat design provides freedom for thermal expansion of the ball without jamming, even at extreme temperatures. Proven in qualification tests and field operation to be excellent, even for the toughest applications on slurry service with solids.
- 17-4PH internal entry stem provides extra strength and durability in severe services.
- Ball solid, high-sphericity 316 stainless steel with hard chrome plating provides durability in severe applications while maintaining a smooth, low turblence flow.
- Flo-Tite's non-magnetic cobalt based superalloy maintains good strength up to 2150°F. AMS 5759 requires minimum yield strength of 45,000 psi at room temperature. This material maintains good oxidation resistance up to 1900°F. Unique ability to resist corrosion in very severe environments. Highly resistant to hydrochloric acid, nitric acid and wet chlorine (subject to need for exercising care in its selection at certain concentrations and temperatures)

Metal Seated Flanged End Connection Severe Series / Full Port Technical Submittal


NO.	Name Materials	Stainless Steel Carbon Stseel		
1	Body	ASTM A351 CF8M	ASTM A216 WCB	
2	Сар	ASTM A351 CF8M	ASTM A216 WCB	
3	Stem	SS316/	17-4PH	
4	Packing Follower	SS3	04	
5	Belleville Washer	SS3	01	
6	Lock Washer	SS3	04	
7	Ball	SS316 Chrome Plated		
8	Riding Seat	SS316 w / Stellite / 17-4 PH		
9	Gasket	Spiral Wound Wire SS316 / Graphite		
10	Stem Packing	TFM / Gr	raphite	
11	Packing Protector	50%PTFE	+\$\$316	
12	Thrust Washer	Nitron	ic 60	
13	Thin Nut	SS304		
14	Body Stud	ASTM A193 B8	ASTM A193 B7	
15	Body Nut	ASTM A194 Gr.8	ASTM A194 2H	
16	Sealing Seat	SS316 w/ Stellite / 17-4 PH		
17	Spring	17-4PH / Inconel		
18	Seat Gasket	TFM / Graphite		


Standard Bill of Materials


Standard Din Of Materials				
NO.	Name Materials	Stainless Steel Carbon Stseel		
1	Body	ASTM A351 CF8M	ASTM A216 WCB	
2	Сар	ASTM A351 CF8M	ASTM A216 WCB	
3	Stem	SS316/	17-4PH	
4	Packing Gland	ASTM A	351 CF8	
5	Packing Follower	SS3	04	
6	Ball	SS316 Chro	ome Plated	
7	Riding Seat	SS316 w/ Stellite /17-4 PH		
8	Stem Packing	TFM / Graphite		
9	Packing Protector	50%PTFE+SS316		
10	Gasket	Spiral Wound Wire SS316 / Graphite		
11	Thrust Washer	Nitror	nic 60	
12	Gland Bolt	SS304	Steel	
13	Body Stud	ASTM A193 B8 ASTM A193 B		
14	Body Nut	ASTM A194 Gr.8 ASTM A194 2H		
15	Spring	17-4PH / Inconel		
16	Sealing Seat	SS316 w / Stellite / 17-4 PH		
17	Seat Gasket	TFM / Graphite		

P - Type Uni-Directional

Metal Seated Threaded & Welded Connections Technical Submittal

Standard Bill of Materials

NO.	Name Materials	Stainless Steel	Carbon Stseel	
1	Body	ASTM A351 CF8M	ASTM A216 WCB	
2	Сар	ASTM A351 CF8M	ASTM A216 WCB	
3	Stem	SS316 /	17-4PH	
4	Packing Gland	ASTM AS	351 CF8	
5	Packing Follower	SS3	04	
6	Ball	SS316 Chro	me Plated	
7	Riding Seat	SS316 w/ Stellite /17-4 PH		
8	Stem Packing	TFM / Graphite		
9	Packing Protector	50%PTFE+SS316		
10	Gasket,Inner	Graphite		
11	Thrust Washer	Nitronic 60		
12	Gland Bolt	SS304 Steel		
13	Body Stud	ASTM A193 B8 ASTM A193 B7		
14	Gasket,Outer	Graphite		
15	Spring	17-4PH / Inconel		
16	Sealing Seat	SS316 w / Stellite / 17-4 PH		
17	Seat Gasket	TFM / Graphite		

Tech Bulletin Page 130E-11

Flo-Tite's Unique Design Options

Unique Problem solving ball designs eliminate most common problems found in the typical ball valve.

Class VI Shut - Off

the end of the 90-degree stroke. This reduced contact results in longer life for the class VI shut-off with lower operating torgues and improved overall

The escaping ball design is an exceptional design for metal seated valves when class VI shut-off is required.

addition of a secondary set of graphite stem packing with a live loaded design using Belleville washers that automatically compensate for an extended cycle life. This unit's focus is on safety with duplicate stem seals and added height which helps distance and protect the valve

Assuring Added

Control ball or slotted V-ports 15, 30, 60, 90 deg V.

Accurate Flow Control

Flo-Tite offers modulating V-port control valves. The V-ball is characterized to meet all custom flow requirements.

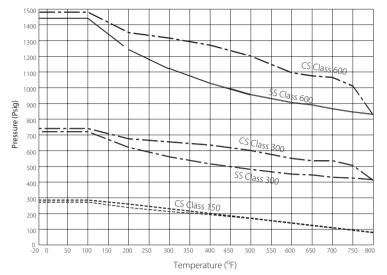
From simple on-off to modulating control applications See tech bulletin page 120.

Ball Surface Treatments and Coatings

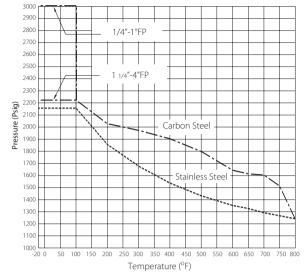
Choosing the right hard surface technique for ball coatings is key in overcoming a wide variety of application problems. These surfaces must resist high temperature wear, galling and corrosion, in addition to maintaining total sealability.

Hard Chrome Plating is very hard electroplate exceeding Rockwell C-67. Together with its low coefficient of friction and its selflubricating properties. Hard Chrome is an ideal material for any wear surfaces. It can be used in applications up to 2000 °F with no ill effects.

Nitriding is a surface treatment technique that significantly increases the hardness and wear resistance of austenitic 300 series stainless steel, by thermochemical diffusion.


Tungsten Carbide with a cobalt binder coating applied by HVOF techniques similar to Cr3C2. WC-Co coating applied mainly to 400 series martensitic stainless steel results with micro-hardness as high as 72 Rc. This coating resists cryogenic temperature down to -320 °F (-196 °C) and high temperatures up to 1000 °F (538 °C). WC-Co is a wear resistance and dense coating with chemical resistance to sulphur environment on Nickel based alloy.

Stellite, A cobalt-based stellite coating provides excellent mechanical wear resistance, with good corrosion resistance at temperatures up to 1000 °F (538 °C).


Design & Technical Data

Pressure Temperature Chart

Flanged End Designs

Three Piece Designs

Hydrostatic Testing - psi [bar]

Class	Material	Shell	Seat
150	Carbon Steel	450 [31]	320 [22]
	Stainless Steel	425 [29]	315 [22]
300	Carbon Steel	1125 [78]	820 [57]
	Stainless Steel	1100 [76]	800 [55]
600	Carbon Steel	2225 [153]	1630 [112]
	Stainless Steel	2175 [150]	1590 [110]

Hydrostatic Testing - psi [bar]

Class	Material	Shell	Seat	
1/4″-1″	Carbon Steel Stainless Steel	4500 [310] 4500 [310]	3300 [228] 3300 [228]	
1 1/4"-4"	Carbon Steel Stainless Steel	3350 [231] 3250 [224]	2450 [167] 2380 [164]	
For 6000psi valve shell and seat test				

pressure, consult factory

Note: WCB carbon steel valves limited to -20°F [-29°C]; Higher Pressures/Temperatures available with optional seat design

Unconditional Firesafe Provision & Inheret electrical continuity

While metal seats are extremely heat resistant, other sealing components such as packing and gaskets are made of heat resistant flexible graphite. No part of the valve will be affected by extraordinary heated environments.

The provision of an anti-static device is not required because of inter-component electric conductivity.

Allowable Industry Leakage Standard

Flo-Tite valves are designed to meet ANSI/FCI requirements, meeting a shut-off class of IV, V or VI

CODE	Class or Seat Type	Test Fluid	Test Pressure	Allowed Pressure	Notes
	I				No Tests performed by agreement between user & Mfg.
	Ш	Water or air	Lesser of 45-60 psig or max. Pressured difference	0.5% of full rated valve capacity	Pressure and flow measured within - 10%
ANSI/FCI 70-2-1976	Ш	Water or air	Lesser of 45-60 psig or max. Pressured difference	0.1% of full rated valve capacity	Pressure and flow measured within - 10%
	IV	Water or air	Lesser of 45-60 psig or max. Pressured difference	0.01% of full rated valve capacity	Pressure and flow measured within - 10%
	v	Water	Max. difference Pressure or by agreement	5x10 ml per min per in. dia. Per psi	Pressure and flow measured within - 10%
	VI	Air or nitrogen	Lesser of 45-60 psig or max. Pressured difference	Per B16,104 table to 3″ nom. dia	Approx. 6 or less bubbles per min. per in of dia.

Class V: The most frequently specified leakage class is class V, and the Flo-Tite standard.

Class VI: is frequently misinterpreted as "bubble-tight". Actually, a certain amount of leakage is allowed. Coincidentally, this leakage often is measured by the number of bubbles of air that escapes per minute within the established test guidelines. The bubble-tight term is normally associated with resilient seated valves.

Metal Seated Valves Tailored to Your Specifications

Tech Bulletin Page 130G-11

Valve Automation

Flo-Tite is a specialist in valve automation systems offering all types of pneumatic and electric actuators

Quotation Information

When quoting metal seated valves, it is very important that we have the following information:

- Valve Type
- Pressure Class
- Materials
- Line Pressure
- Temperature
- Media
- Flow Direction
- Class Shut-Off Required
- Tag Required
- Flow Arrow Required

alves & controls

Multiported - Valves

Flo-Tite offers a wide selection of metal seated 3 & 4 way valves, designs to simplify piping systems.

Trunnion Design Valves

Flo-Tite also offers its metal seated options in our TM - Series Size range up to 48" All ANSI pressure classes Wide selection of body materials and designs

Applications

Power Generation

- Control Valve Isolation
- Bottom Ash Isolation
- Superheater Spray
- Boiler Feed Pump
- Main Steam Supply
- Main Boiler Drain

Refining

- Coal Slurry Handling
- Heavy Oil Units
- Hydrogen Isolation
- Coker Isolation
- Catalyst Slurry
- Hydrotreating Units

Technical information such as dimensions, weights, Cv and assembly exploded views Can be found in our standard catalog brochure for all valve series

Flanged End Tech Bulletin Page 58 3PC Tri-Pro Tech Bulletiin Page 51 3 Way Multiport Bulletin Page 90

Flo-Tite, Inc. 305 East 21st Street Lumberton, NC 28358 P.O. Box 1293 Lumberton, NC 28359 Website:www.flotite.com Tel: (910) 738-8904 Fax: (910) 738-9112 E-mail: flotite@nc.rr.com